

University of California at Irvine Combustion Summer School August 24, 2023

Combustion research: past, present and future – ignition experiments

Margaret Wooldridge

Director, Insitute for Energy Solutions at the University of Michigan Walt J. Weber, Jr.. Professor of Sustainable Energy, Environmental, and Earth Systems Engineering Arthur F. Thurnau Professor, Departments of Mechanical and Aerospace Engineering, University of Michigan, Ann Arbor

- The carrot (opportunities) and the stick (challenges) of ignition experiments
- How we do it in the motor city characteristics of ignition experiments in a rapid compression facility (RCF)
- A little bit of absorption theory
- The devil is in the details application of laser absorption to RCF experiments
- Invitation to do consider laser experiments

What motivates us?

• The carrot and the stick of interrogating ignition experimentation

6.409 ms

Ignition studies:

combustion LABOR

- provide quantitative data on the reactivity of fuels
- provide quantitative data on the reaction pathways important during combustion
- provide quantitative data on fuel performance (efficiency and emissions)

Ignition studies:

- are inherently transient
- span a broad range of temperatures (600-2000 K)
- span a broad range of pressures (5-100 atm)

Why do we do the things we do?

- 1. How does ignition behavior apply to gas turbines and combustors and reciprocating engines?
 - Ignition pathways are the same as the reaction pathways found in flames in engines, combustors, boilers, etc. (time = distance)
 - Ignition/flame interaction behavior is critical to gas turbines and reciprocating engines - currently limiting efficiencies in reciprocating engine technology
- 2. Why do reaction pathway studies matter?

combustion LABORATORY

- Too many blends and impurities to test them all... We need to develop reaction rate rules based on chemical structure
- Ignition data provide higher fidelity metrics of our understanding of heat release rates, emissions, abnormal combustion, etc.

https://www.youtube.com/watch?v=fo-LuonknfA

How do we understand the impact of changing fuels?

We want high fidelity measurements that tell us how well we understand the reactivity and pathways of the fuel.

We need this information to design, predict performance, and limit emissions in engines, combustors, furnaces, etc.

Choose a new partner

- Share a description of your experimental platform(s) you are using for your doctoral work with your partner
- Explain why it is a good tool for your research topic

.

The UM rapid compression facility

The UM rapid compression facility

Donovan, M. T.; He, X.; Zigler, B. T.; Palmer, T. R.; Wooldridge, M. S.; Atreya, A. Combust. Flame 2004, 137, 351-365.

RCF works combustion

Typical results for an iso-octane ignition

combustion LABORATORY experiment

We have excellent radial and axial homogeneity! RCF experiments are well suited to line-of-absorption measurements.

- 1. We measure **pressure**.
- 2. From pressure, we can estimate temperature
- 3. We want **species** time histories!
- 4. We can make those measurements physically \leftarrow gas sampling at discrete times
- 5. Or we can make those measurements non-intrusively laser absorption

The single most important equation in absorption spectroscopy. $I_{v}(L)/I_{v}^{o} = fractional \ transmission$ $I_{v}(L)/I_{v}^{o} = exp(-k_{v}L)$ also $I_{v}(L)/I_{v}^{o} = exp(-k_{v}P\chi_{i}L)$

> spectral intensity = I_v spectral intensity of source radiation = I_v^o path length through the absorbing media = L spectral absorption coefficient = k_v , k_v

*There are caveats on where this is applicable, like when the source radiation intensity is much greater than the blackbody emission

combustion LABORATORY Public service announcement

There are many forms of the equations for Beer's law.
Units are our friends, and can help!

- The Einstein coefficients, integrated line strength, *S*; the oscillator strength, *f*; and the spectral absorption coefficient, **k**_v are all related and are all fundamental properties of a molecule or atom.
- Watch the units to determine which parameter is being used. Beer's law was developed for absorption in optically thin media.

$$-\ln \frac{I(v)}{I_o} = k_{v,OH}L$$
$$-\ln \frac{I(v)}{I_o} = S_{lu}\phi(v)p\chi_{OH}L$$
$$-\ln \frac{I(v)}{I_o} = S_{lu}\phi(v)p_{OH}L$$

 $\phi(v)$ = normalized line shape function P = pressure χ_{OH} = mole fraction of OH P_{OH} = partial pressure of OH

Clever applications of Beer's Law absorption

spectroscopy

combustion LABORATORY

Several methods to choose from:

ζ_i)?

- Scanning wavelength fast frequency modulation spectroscopy
- Fixed frequency maximum absorption at the resonant transition

frequency

etc.

•

 Single transition versus multiple transitions (multiplexed)

e smaller species, like **OH** (electronic transitions in the uv

transitions of stables in the infrared e.g. 1.392 $\mu\text{m})$

$$-\ln\frac{I(\nu)}{I_o} = S_{lu}\phi(\nu)p\chi_{OH}L = k_{\nu}L$$

combustion LABORATORY The take home message

- Path averaged absorption is function of:
 - **–** Temperature (via transition strength, Doppler broadening, and collisional broadening)
 - Absorbing species mole fraction
 - Pressure (via collision broadening and density of absorbing media)
 - Path length (fixed for the UM RCF = diameter)

OH laser absorption applied to RCF ignition studies

combustion LABORATORY

Fixed-frequency, differential, narrow-line laser absorption Laser : Intra-cavity doubled ring dye laser pumped with an Ar ion (now pumped with a solid state diode laser) $R_1(5)$ transition of $A^2\Sigma^+ \leftarrow X^2\Pi_i(0,0)$ ($v_o = 32606.56$ cm⁻¹ / 306.687 nm).

Fractional absorption: iso-octane ignition

$$\chi_{OH} = -\frac{1}{S(T)\phi_{v}PL}\ln(\frac{I}{I_{o}})_{v}$$

Temperature calculated based on pressure data using three time intervals.

1. From the start of compression to the minimum P after EOC, use isentropic relations

$$\int_{T_o}^T \frac{\gamma}{\gamma - 1} d \ln T = \ln \left(\frac{P}{P_o} \right)$$

2. Use chemically reacting model for second and third intervals

OH mole fraction time history

combustion LABORATORY

1. We can benchma mechanisms

1400

1200

OH Mole Fraction [ppm] 00 A00 00 A00 700 700 700 700

200

0

0

ark reaction		Number	Number of	Mechanism
		of Species	Reactions	Туре
	Curran et al	858	3606	Detailed
	Chen	259	621	Skeletal
	Golovichev	84	412	Skeletal
	Tanaka et al.	38	61	Reduced
Tanaka	Glaude et al.	353	1481	Detailed
Chen				
—— Curran				
—— Current Study		-		
Golovichev		_		
Glaude		$\mathbf{P} = \mathbf{P}$	14.3 atm	
	i i		071 V	
		1 I =	9/1 K	
		$ \phi = 0$	0.35	
{	i.		- 16 60/	
}	5	$ O_2$ -	- 10.0%	
	AND THE PARTY OF T			
La construction of the second second second second		_		
$\begin{array}{ccc} 5 & 10 & 15 \\ & & Time \left[mes \right] \end{array}$	20	25		

What can we do with the OH data?

combustion LABORATORY

2. We can evaluate the effects of thermochemical data.

3. We can use the features to improve elementary rate coefficients4. We can use trends with pressure to identify reactions governing ignition behavior

combustion LABORATORY

Reactions	τ	Peak _{XOH}
O+H ₂ O<=>2OH		▲
CO+OH<=>CO ₂ +H	↑	ł
H+O2<=>O+OH	ł	A
$2OH+M \le H_2O_2+M$	₩	

How well did we do?

combustion LABORATORY

Sources of experimental uncertainties

Uncertainty Source	Direct Uncertainty	$U_i = Uncertainty in \chi_{OH}$
Absorption due to olefine moleular	3%	-8%
Laser source departure from resonant laser frequency	± 0.05 cm-1	3%
Peak temperature estimation	+150K/-100K	10%/-7%
Pressure oscillations, Pressure transducer linearity, and amplifier drift	±4%	0.5%
Path length	$\pm 1.0 \text{ mm}$	$\pm 2.5\%$
Spectroscopic parameters Various		±5%
Combined uncertainty		+12%/-12%

Laser absorption spectroscopy can be...

- absolute and quantitative: does not require calibration*
- accurate*: ±5% T (via OH), ±20% T (via H₂O), ±10% χ_{OH} , ±35% χ_{H2O}
- sensitive**: ~1-15 ppm detectivity limit for OH, ~0.02%-0.1% detectivity limit for H_2O
- robust: applicable in high T, high P, multi-phase flows
- in situ/non intrusive ← need optical access, but/and line-of-sight (path-averaged)
- good spatial resolution: <0.5 mm
- fast: with continuous laser source, the temporal resolution is limited by your detection and data acquisition methods (<0.5 μsec with photodiodes)

*depends on the accuracy of the absorption constants of the probe species

**depends on the oscillator strength of the probe species, the source laser intensity and the interrogation conditions

I encourage you to explore the possibilities!

With your partner

• Briefly, explain what diagnostics you are using in your experiments and why? For example, thermocouples for exhaust gas temperature. What are the sources of uncertainties in your experiments?

Supplemental material

What to expect in a reciprocating engine?

Absorption and emission spectroscopy are difficult, but not impossible with gases at high pressures

combustion LABORATORY

$$-\ln \frac{I(v)}{I_o} = S_{lu} \varphi(v) P \chi_{OH} L = k_v P \chi_{OH} L$$
$$k_v [cm^{-1}atm^{-1}] = S_{lu} (T) \varphi(v)$$

 $\begin{aligned} \varphi(\nu) &= \text{normalized line shape function} \\ \mathsf{P} &= \mathsf{pressure} \\ \chi_{\mathsf{OH}} &= \mathsf{mole fraction of OH} \\ \mathsf{P}_{\mathsf{OH}} &= \mathsf{partial pressure of OH} \end{aligned}$

• So I know Beer's Law. So what?

- 1. Fractional absorption is "easy" to measure,
 - 2. k_v is a function of many important combustion parameters, like P, T and χ_i (the mole fraction of the absorbing species)

Absorption Spectroscopy Theory

Beer's Law:

$$-\ln \frac{I(v)}{I_{o}} = S_{hu}\phi(v)P\chi_{OH}L = k P\chi_{OH}L$$
Absorption Coefficient:

$$k_{v}[cm^{-1}atm^{-1}] = S_{hu}(T)\phi(v)$$
Integrated Line Strength:

$$S_{lu}(T) = \frac{1}{8\pi c v_{o}^{2}} \frac{1}{kT} \frac{e^{\frac{-i\pi r^{2}}{U}}}{Q_{int}} A_{ul}(2J'+1)(1-e^{\frac{-i\pi r^{2}}{U}})$$
Partition Function:

$$Q_{int} = Q_{elec}Q_{rol}Q_{vib} = f(T)$$
Normalized Line Shape Function:

$$\phi(v) = \left(\frac{\ln 2}{\pi}\right)^{\frac{1}{2}} \frac{2}{\Delta v_{Doppler}} V(w,a)$$
Collisional Broadening:

$$\Delta v_{collision} = \sum 2\gamma_{i,ref} P_{i}(T) T_{ref})^{-n_{i}}$$

$$\Delta v_{Doppler} = 3.581 \times 10^{-7} v_{0} \sqrt{T} / M$$
Doppler Broadening:

$$a = (\ln 2)^{1/2} \Delta v_{collision} / \Delta v_{Doppler}$$